Purpose: Organize and track your experiments using Recursive Feature Elimination (RFE) in Python.
| Field | Description |
|---|---|
| Project Name | Example: Predict Customer Churn |
| Dataset | Example: Telco Churn Dataset |
| Target Variable | Example: Churn |
| Date | YYYY-MM-DD |
| Objective | Describe the feature selection goal (e.g., reduce dimensionality, improve accuracy) |
| Parameter | Value |
|---|---|
| RFE Used? | โ Yes / โ No |
| Estimator Used | Example: DecisionTreeClassifier() |
| n_features_to_select | Example: 5 |
| Cross-Validation Method | Example: RepeatedStratifiedKFold(n_splits=10, n_repeats=3) |
| Scoring Metric | Example: Accuracy (classification), MAE (regression) |
| Pipeline Used? | โ Yes / โ No |
| Metric | Value |
|---|---|
| Baseline Score (No RFE) | Example: 0.85 |
| RFE Score | Example: 0.89 |
| Standard Deviation | Example: 0.030 |
| Best Number of Features (if using RFECV) | Example: 6 |
Paste the feature rankings here. Example:
| Feature Index | Feature Name | Selected | Rank |
|---|---|---|---|
| 0 | tenure |
โ Yes | 1 |
| 1 | monthly_charges |
โ No | 3 |
| โฆ | โฆ | โฆ | โฆ |