๐Ÿง  RFE Feature Selection Experiment Log

Purpose: Organize and track your experiments using Recursive Feature Elimination (RFE) in Python.


๐Ÿงช Experiment Summary

Field Description
Project Name Example: Predict Customer Churn
Dataset Example: Telco Churn Dataset
Target Variable Example: Churn
Date YYYY-MM-DD
Objective Describe the feature selection goal (e.g., reduce dimensionality, improve accuracy)

โš™๏ธ Experiment Configuration

Parameter Value
RFE Used? โœ… Yes / โŒ No
Estimator Used Example: DecisionTreeClassifier()
n_features_to_select Example: 5
Cross-Validation Method Example: RepeatedStratifiedKFold(n_splits=10, n_repeats=3)
Scoring Metric Example: Accuracy (classification), MAE (regression)
Pipeline Used? โœ… Yes / โŒ No

๐Ÿ“Š Results

Metric Value
Baseline Score (No RFE) Example: 0.85
RFE Score Example: 0.89
Standard Deviation Example: 0.030
Best Number of Features (if using RFECV) Example: 6

โœ… Selected Features

Paste the feature rankings here. Example:

Feature Index Feature Name Selected Rank
0 tenure โœ… Yes 1
1 monthly_charges โŒ No 3
โ€ฆ โ€ฆ โ€ฆ โ€ฆ

๐Ÿ” Observations & Learnings